التحريض الكهرطيسي
تحريض كهرطيسي
Electromagnetic induction -
عصام فواز الجغامي
التحريض الكهرطيسي electromagnetic induction ظاهرة تنتج قوة محركة كهربائية، أو تياراً كهربائياً في دارة ناقلة عن طريق تغير تدفق الحقل المغنطيسي فيها. إنه إنتاج حقل كهربائي متحرض عن طريق حقل مغنطيسي متغير مع الزمن. تُعدّ هذه الظاهرة أساس التقانة التي تعمل وفقها المولدات والمحولات والمحركات الكهربائية -على اختلاف تصاميمها- فضلاً عن تطبيقاتها في الأدوات المنزلية والصناعية، والأجهزة التقنية وتقنيات القياس.
أُجرِي -في ثلاثينيات القرن التاسع عشر- العديد من التجارب لتحديد القوة المحركة الكهربائية المتحرضة مغنطيسياً. وكان من الرواد العاملين في هذه الأبحاث العالم الإنكليزي ميشيل فاراداي M. Faraday والعالم الأمريكي جوزيف هنري J. Henry. وبينت النتائج أنه عند تقريب قضيب مغنطيسي من ملف سلكي موصول إلى مقياس غلفاني أو إبعاده ينشأ في الدارة تيار كهربائي يسمى التيار المتحرض، وتسمى القوة المحركة الكهربائية الموافقة التي تسببه؛ القوة المتحرضة. وإذا بقي كل من القضيب المغنطيسي والملف ساكنين، فلن تتحرض أي قوة محركة كهربائية، ولا يمر أي تيار في الملف. وعندما يُستبدَل بالقضيب المغنطيسي مغنطيس كهربائي، مثل ملف يمر فيه تيار ناجم عن بطارية، تتحرض في دارة الملف الأول قوة محركة كهربائية، مادام يتحرك أحد الملفين بالنسبة إلى الآخر. وتكون جهة التيار المتحرض عند تقريب المغنطيس معاكسة لجهة حقل التيار المتحرض عند إبعاده، وكذا الأمر بالنسبة إلى الملف. فإذا استُخْدِمَت دارة مكونة من ملفين الأول موصول إلى مقياس غلفاني والثاني موصول إلى بطارية، ينشأ في دارة الملف الأول قوة محركة كهربائية متحرِّضة، عن طريق تغيير شدة التيار المار في الملف الثاني، مع بقاء كل منهما ساكناً بالنسبة إلى الآخر. كذلك تنشأ في دارة الملف الأول قوة محركة كهربائية متحرضة آنية، أو تيار لحظي، عند فتح دارة الملف الثاني وإغلاقها، أو تغيير مقاومته بتغيير درجة حرارته.
إن العنصر المشترك في تلك التجارب جميعها هو تغير التدفق المغنطيسي من خلال الملف الموصول إلى المقياس الغلفاني، وذلك إما بسبب تغير الحقل المغنطيسي مع الزمن، وإمّا بسبب حركة الملف في حقل مغنطيسي غير متجانس. وقد استنتج فاراداي أنه -في تلك التجارب جميعها- تتناسب القوة المحركة الكهربائية المتحرِّضة مع معدل تغير التدفق المغنطيسي في الملف. أما اتجاهها فيتعلق بزيادة التدفق أو نقصانه، وتنعدم إذا كان التدفق ثابتاً.
تشبه القوى المحركة الكهربائية المتحرضة مغنطيسياً تلك القوى المحركة الكهربائية التي تعطيها البطاريات والمولّدات الكهربائية والخلايا الشمسية والمزدوجات الكهرحرارية وخلايا الوقود، من ناحية كونها عادةً نتيجةً لفعل قوى ليست كهرساكنة. لهذا عندما تكون هذه القوى ناجمة عن حقول كهربائية إضافية، متحرضة عن طريق حقول مغنطيسية متغيرة؛ تكون هذه الحقول غير محافظة conservative- non وتختلف عن الحقول الكهربائية المحافظة الناجمة عن الشحنات الكهربائية، التي يطبق عليها قانون كولون، ويعبر عنها بالكمون الكهربائي.
يبين الشكل (1) أن التدفق المغنطيسي للحقل المغنطيسي عبر سطح عنصري هو (العلاقة 1):
الشكل (1) تدفق الحقل المغنطيسي من خلال عنصر سطح. |
حيث يدل على مركّبة الحقل المغنطيسي العمودية على السطح العنصري، و الزاوية بين و. أما التدفق المغنطيسي الكلي من خلال سطح محدد، فهو (العلاقة 2):
إذا كان الحقل المغنطيسي متجانساً على كامل السطح الممثل بالمتجهة؛ عندئذٍ يعطى التدفق المغنطيسي بالعلاقة (3):
ينص قانون التحريض لفارادي على أن القوة المحركة الكهربائية المتحرضة في دارة مغلقة تساوي معدل التغير الزمني time rate السالب للتدفق المغنطيسي من خلالها، أي (العلاقة 4):
وضع العالم الروسي لنز H. F. E. Lenz الذي كرَّر -على نحوٍ مستقلٍّ- العديد من اكتشافات فاراداي وهنري؛ قانوناً لتحديد اتجاه التيار المتحرض، وبالنتيجة اتجاه القوة المحركة الكهربائية المتحرضة. ينص قانون لنز على أن اتجاه أي أثر تحريض مغنطيسي يعاكس السبب الذي أدى إلى نشوئه. ويمكن أن يكون سبب نشوء أثر التحريض تغير التدفق من خلال دارة ساكنة عن طريق تغيير الحقل المغنطيسي، أو تغير التدفق الناجم عن حركة النواقل المكونة للدارة، أو أي طريقة أخرى تغير التيارات في الدارات المختلفة. إن التيار المتحرض في الدارة يولّد في المساحة المحدودة بسطحها حقلاً مغنطيسياً، يعاكس الحقل المغنطيسي المطبق عندما يزداد هذا الحقل، في حين يكون اتجاه الحقل المغنطيسي المتولد من التيار المتحرض من اتجاه الحقل المطبق عندما يتناقص هذا الأخير، وهذا يعني أن التيار المتحرض يولد حقلاً مغنطيسياً يعاكس تدفُّقُه تغير التدفق الخارجي من خلال الدارة؛ وليس التدفق بحد ذاته.
يبين الشكل (2) عروة تيار في حقل مغنطيسي متجانس حيث تزداد شدة الحقل؛ مما يؤدي إلى نشوء قوة محركة كهربائية متحرضة تسبب نشوء تيار متحرض في العروة. ووفقاً لقانون لنز يجب أن يُنْتِج التيارُ المتحرض حقلاً مغنطيسياً ضمن العروة يتجه باتجاه الأسفل معاكساً تغير التدفق المغنطيسي الخارجي، وعليه يكون اتجاه التيار المتحرض بحيث ينجم عنه الحقل المغنطيسي المتحرض.
الشكل (2) اتجاه التيار المتحرض والحقل المغنطيسي المتحرض في عروة تيار عند ازدياد تدفق الحقل المغنطيسي من خلال العروة. |
يبين الشكل (3) تطبيقات مختلفة لقانون لنز من أجل مغنطيس يتحرك بالقرب من عروة ناقلة. ينتج التيار المتحرض - في الحالات الأربع جميعاً- حقلاً مغنطيسياً متحرضاً، يتجه بحيث يعاكس تغير التدفق من خلال العروة الناقلة والناجم عن حركة المغنطيس.
الشكل (3) اتجاه التيار المتحرض والحقل المغنطيسي المتحرض في عروة تيار بسبب تغير تدفق الحقل المغنطيسي الناجم عن تحريك قضيب مغنطيسي على طول محور العروة. |
يعطي قانون لنز اتجاه التيار المتحرض فقط. أما شدة هذا التيار فتعتمد على مقاومة الدارة. فكلما كانت مقاومتها كبيرة -أي الدارة مصنوعة من مادة عازلة- كان التيار المتحرض الذي يظهر ليعاكس تغير التدفق المغنطيسي صغيراً جداً، ويكاد يكون معدوماً، وعندها يصبح تغير التدفق سهلاً. أما إذا كانت مقاومة الدارة صغيرة -أي إنها مصنوعة من ناقل جيد- فيكون التيار المتحرض كبيراً، ويصبح تغير التدفق أصعب، ويبقى التيار المتحرِّض مادام القضيب المغنطيسي والعروة يتحركان أحدهما بالنسبة إلى الآخر، ويتناقص التيار المتحرض إلى الصفر بسرعة عند توقف الحركة النسبية. أما في الحالة الحدية التي تكون فيها مقاومة الدارة معدومة؛ فيبقى جريان التيار المتحرض قائماً، حتى بعد اختفاء القوة المحركة الكهربائية المتحرضة، أي حتى عند توقف حركة المغنطيس بالنسبة إلى العروة. وبفضل استمرار هذا التيار يكون التدفق من خلال العروة هو نفسه، كما كان قبل توقف المغنطيس عن الحركة، ولهذا لا يتغير التدفق من خلال العروة التي مقاومتها معدومة. يلاحظ ذلك عندما تكون العروة مصنوعة من مواد ذات ناقلية فائقة.
يرتبط التيار الكهربائي بالحقل الكهربائي، الذي يطبق بدوره قوة كهربائية على الشحنات المتحركة. وبالطريقة ذاتها يمكن ربط التيار الكهربائي المتحرض في العروة الناقلة مع حقل كهربائي يتولد في العروة، نتيجة لتغير التدفق المغنطيسي من خلالها. ولما كان وجود الحقل الكهربائي لا يتعلق بوجود الشحنات المنفعلة أو غيابها، لهذا السبب -حتى بغياب العروة الناقلة- فإن الحقل المغنطيسي المتغير يولد حقلاً كهربائياً متحرضاً، هو حقل غير محافظ. إن العمل الذي ينجزه الحقل الكهربائي المتحرض على واحدة الشحنة -على طول أي مسار مغلق- يساوي القوة المحركة الكهربائية المتحرضة، أي (العلاقة 5):
وهذه هي الصيغة العامة لقانون فارادي، وهي تمثل الصيغة التكاملية لمعادلة ماكسويل الرابعة في الخلاء.
للتحريض الكهرطيسي العديد من التطبيقات العملية المختلفة، لعل من أهمها المولدات الكهربائية، التي تعمل على تحويل الطاقة الميكانيكية إلى طاقة كهربائية. ويبين الشكل (4) مخططاً لمولد تيار متناوب بسيط مؤلف من عروة مستطيلة تدور حول محورها بسرعة زاوية ثابتة ، وموضوعة في منطقة حقل مغنطيسي متجانس وثابت . توصَل نهايتا العروة بحلقتين منزلقتين إلى الدارة الخارجية عن طريق مسفرتين ثابتتين. لما كان الحقل المغنطيسي متجانساً على كامل العروة من جهةٍ، ومن جهةٍ أخرى يعطى معدل التغير الزاوي ؛ فإن قانون فارادي يعطي القوة المحركة الكهربائية المتحرضة بالعلاقة (6):
الشكل (4): (أ) مولد تيار متناوب بسيط. (ب) تغيرات القوة المحركة الكهربائية المتحرضة والتدفق المغنطيسي عند وضعيات مختلفة للعروة. |
تبين هذه العلاقة أن القوة المحركة الكهربائية المتحرضة تتغير تغيراً جيبياً مع الزمن، ولا تتعلق بالشكل الهندسي لعروة التيار، بل تتعلق بمساحة سطحها فقط. ولما كانت القوة المحركة الكهربائية المتحرضة متغيرة جيبياً؛ فإن التيار المتحرض جيبي أيضاً. ويمكن زيادة القوة المحركة المتحرضة عن طريق زيادة سرعة دوران العروة، أو زيادة الحقل المغنطيسي، أو باستخدام ملف مكوّن من عروة، حيث تصبح القوة المحركة أكبر مرّة منها بحالة العروة الواحدة. كما يمكن الحصول على النتائج نفسها عند تدوير المغنطيس الكهربائي الذي يعطي الحقل المغنطيسي مع بقاء العروة ساكنة.
يستخدم التحريض الكهرطيسي في مولّدات التيار المستمر، كما يستخدم في توليد التيار المتناوب، مع بعض الاختلافات البسيطة. يبين الشكل (5) مبدأ توليد التيار المستمر. وتعمل الحلقات المنزلقة -التي تسمى المبدِّلات- على عكس التوصيلات إلى الدارة الخارجية عند المواضع الزاوية التي تكون فيها القوة المحركة الكهربائية المتحرضة معكوسة. وبالنتيجة تتولد قوة محركة كهربائية قيمتها الوسطية موجبة دوماً.
الشكل (5): (أ) مولد تيار مستمر. (ب) تغيرات القوة المحركة الكهربائية المتحرضة والتدفق المغنطيسي عند وضعيات مختلفة للعروة. |
يستخدم الترتيب المؤلف من مبدلين ومسفرتين في محركات التيار المستمر، حيث يدور المحرك، ويعطي طاقة ميكانيكية عندما يمر فيه تيار كهربائي. ويحتوي جذع المحرك القابل للدوران حول محوره على ملفٍ مكون من عدد من عرى التيار المتماثلة. وعندما يدور هذا الجذع يتغير التدفق المغنطيسي من خلال الملف، وتتولد قوة محركة كهربائية متحرضة، تسمى القوة المحركة الكهربائية العكسية، أو الراجعة؛ لكونها تفعل على نحوٍ يعاكس الحركة الدورانية للجذع. ويدور المحرك، وينجز عملاً، ولكن إذا لم تكن هناك حمولة على المحرك؛ فإن سرعته تزداد حتى تصبح القوة المحركة الكهربائية العكسية مساويةً الجهد الخارجي المطبق على المحرك. أما بوجود الحمولة الميكانيكية فيمكن أن تكون سرعة المحرك محدودة، و تكون القوة المحركة العكسية أقل من الجهد الخارجي المطبق. وكلما كانت الحمولة الميكانيكية أكبر؛ كانت سرعة دوران المحرك أصغر، والقوة المحركة العكسية أخفض، وذلك لأن تتناسب تناسباً طردياً مع التواتر .
تعمل المحركات الكهربائية على نحوٍ معاكسٍ لعمل المولدات. حيث تعطي طاقة كهربائية تحولها إلى طاقة ميكانيكية عند التبديل بين جذعي المولد.
تُعدّ المحولات الكهربائية من التطبيقات الأخرى المهمّة للتحريض الكهرطيسي، وتُستخدَم لرفع الجهد (الفولطية) أو خفضه، يبين الشكل (6) مبدأ عمل المحول الكهربائي، الذي يتألف من ملف أولي عدد لفاته وملف ثانوي منفصلين كهربائياً، وملفوفين حول نواة حديدية، تتكون عادةً من صفائح رقيقة؛ مما يحافظ على خطوط الحقل المغنطيسي ضمن النواة. عند تطبيق فرق جهد متناوب على الملف الأولي، فإن تدفق الحقل المغنطيسي الناتج في النواة يتغير، فيتحرض في الملف الثانوي فرق جهد متناوب له تواتر الجهد المطبق على الملف الأولي نفسه، لكن قيمته مختلفة. ووفقاً لقانون فارادي، يكون فرق الجهد، أو القوة المحركة الكهربائية المتحرضة في كل من الملفين بحسب العلاقتين (7) و(8):
الشكل (6) مبدأ عمل المحول الكهربائي. |
لما كان التدفق في كل لفة واحدة هو نفسه في الملفين؛ فإن القوة المحركة الكهربائية المتحرضة لكل لفة هي نفسها في الملفين. ومن جهةٍ أخرى، إذا كانت مقاومة الملفين مهملة، فإن القوة المحركة الكهربائية المتحرضة و سوف تساوي فرق الجهد بين طرفي الملف الأولي والثانوي ، وعندئذٍ تعطى علاقة المحول الكهربائي بالعلاقة (9):
تبين علاقة المحول الكهربائي أنه إذا كان ، فإن فرق الجهد الناتج في الملف الثانوي أكبر منه في الملف الأولي، ويكون المحول رافعاً للجهد، والعكس صحيح حيث يكون عندها المحول خافضاً للجهد.
يحوي العديد من الأجهزة الكهربائية قطعاً معدنية كبيرة تقع في منطقة حقول مغنطيسية متغيرة، أو أنها تتحرك في منطقة حقول مغنطيسية ثابتة. وتتولد -بسبب ظاهرة التحريض الكهرطيسي- تيارات كهربائية متحرضة ضمن هذه القطع، تدعى التيارات الدواميةeddy currents، أو تيارات فوكو Foucault currents. يبين الشكل (7) قرصاً معدنياً يدور بحيث يخضع جزء منه إلى حقل مغنطيسي عمودي على مستوي القرص. عندما يتحرك القطاع عبر الحقل تتولد فيه قوة محركة كهربائية تعمل على تحريك الإلكترونات الحرة فيه باتجاه الأسفل من إلى . ولما كان القطاعان و واقعين خارج الحقل؛ فإنهما يوفران المسارات الضرورية للإلكترونات كي تعود من إلى وتشكل التيارات الدوامية.
الشكل (7) التيارات الدوامية المتحرضة. |
وفقاً لقانون لنز، تعاكس التيارات المتحرضة التغيرات التي سببتها، ففي القطاع الواقع إلى اليسار، حيث الحقل معدوم، لكن على وشك الدخول في منطقة الحقل؛ فإن التيارات الدوّامية يجب أن تتجه مع دوران عقارب الساعة؛ كي يتولد منها حقل مغنطيسي تعاكس جهته الحقل الخارجي ويعاكس زيادة التدفق. أما في القطاع الواقع إلى اليمين فإن جهة التيارات الدوّامية تكون بعكس دوران عقارب الساعة، بحيث يتولد منها حقل مغنطيسي توافق جهته الحقل الخارجي، وتعاكس نقصان التدفق. من جهةٍ أخرى، تخضع التيارات الدوّامية في منطقة الحقل المغنطيسي لقوة مغنطيسية تعاكس دوران القرص، في حين لا تخضع التيارات الواقعة خارج الحقل لهذه القوة، ولهذا يسبب التآثر بين التيارات الدوّامية والحقل المغنطيسي أفعال كبح وإعاقة. تستخدم مثل هذه الآثار في العديد من التطبيقات العملية، مثل مكابح القطارات السريعة، وتخميد اهتزاز الجمل المهتزة بسرعةٍ، وفي أفران التحريض لصهر المعادن في حاويات محكمة الإغلاق ومنع حصول أي تلوث مهما صغر، وفي أجهزة كشف المعادن الثابتة منها والمنقولة، المستخدمة في المطارات والمنافذ الحدودية، وكشف الكنوز المدفونة.
وللتيارات الدوّامية المتحرضة أيضاً آثار غير مرغوب فيها. يبين الشكل (8) التيارات الدوّامية المتشكلة في نواة محول تيار متناوب. وإذا كانت النواة مصمتة تتولد فيها تيارات دوّامية كبيرة، تعمل على تبديد الطاقة الكهربائية في النواة وتسخينها، وتوليد قوة محركة كهربائية عكسية في الملف، في حين تصغر هذه التيارات كثيراً عند جعل النواة مكونة من صفائح معزولة؛ مما يقلل تبديد الطاقة فيها، ويُجنب فرط التسخين، ويُرفع مردود المحوّل.
الشكل (8) التيارات الدوامية المتولدة في نواة محول تيار متناوب. |
إضافة إلى ذلك، فإن للتيارات المتحرضة في هوائيـات أجهزة الاسـتقبال الراديوية والتلفـازية والرادارية- وبالتالي القوة المحركة المتحرضة فيها قبل تضخيمها- من التطبيقات المهمّة التي تلي في أهميتها استعمال المحركات والمولّدات.
مراجع للاستزادة: - Sh. Awasthi, Electromagnetic Induction, JEE PROGRESS 2019. D. C.Giancoli, Physics for Scientists & Engineers with Modern Physics, Pearson, 2008. -J. W. Jr.Jewett, R. A.Serway, Physics for Scientists and Engineering with Modern Physics, Brooks/Cole, 2010. -S. J.Orfanidis, Electromagnetic Waves and Antennas, McGraw-Hill, 2002. -E. J.Rothwell, M. J. Cloud, Electromagnetics, CRC Press, Boca Raton, 2001. -H. D. Young, R. A. Freedman, A. L. Ford, University Physics, Pearson-Addison-Wesley, 2008. |
- التصنيف : الكيمياء والفيزياء - النوع : الكيمياء والفيزياء - المجلد : المجلد السادس مشاركة :