المرونة
مرونه
Elasticity - Elasticité
المرونة
تتعرض المواد والعناصر الإنشائية والبنى عند التشكيل forming أو الاستخدام أو الراحة لعدد من القوى أو الأحمال التي تسهم مع عوامل أخرى في تحديد أدائها وسلوكها وشروط انهيارها fracture وفترة خدمتها. وينتج من هذه القوى ما يطلق عليه إجهادات التحميل loading stress. لكن غياب القوى الخارجية لا يعني بالضرورة انعدام الإجهادات في الأجسام وذلك بسبب قوى الجاذبية أو القوى المغنطيسية التي ينتج منها ما يسمى الإجهادات الذاتية. ومهما كانت طبيعة هذه القوى؛ فهي تسبب حركة الأجسام المعرضة لها، أو تشوهها.
يتناول علم الميكانيك حركة الأجسام بعدِّها صلبة غير قابلة للتشوه، وتتناول علوم المرونة elasticity ومقاومة المواد واللدونة[ر] plasticity تشوه الأجسام والبنى. وتظهر المواد سلوكاً ميكانيكياً يتعلق بطبيعتها وبنيتها وشروط تطبيق القوى المؤثرة فيها، فعندما يطبق الحمل نفسه على سلكين أحدهما من المطاط والثاني من الفولاذ متماثلين في الأبعاد، يستطيل المطاط استطالة تفوق بأضعاف استطالة الفولاذ، ويعود هذا الاختلاف إلى الاختلاف في طبيعة هاتين المادتين وأثر ذلك في استجابتهما الميكانيكية.
يعبر السلوك الميكانيكي للمواد عن استجابتها لفعل القوى والأحمال، ويقترن هذا السلوك بعدد من الخواص الميكانيكية، مثل المرونة واللدونة واللزوجة وغيرها.
تصنف المواد القابلة للتشوه في عائلتين كبيرتين: الأجسام الصلبة والسوائل، ويُفسر سلوكها الميكانيكي بناءً على ثلاثة أنماط: السلوك المرن والسلوك اللدن والسلوك اللزج. وإذ تمثل هذه الأنماط حالات نموذجية؛ فإن الأجسام تتميز بسلوك مركب يتألف من نمطين أو ثلاثة، ويتم توصيف السلوك الميكانيكي من خلال صياغة علاقة رياضية تربط بين معاملات القوى أو الحمولات F من جهة ومعاملات تغير الشكل الهندسي للأجسام، أي التشوه deformation، eε، من جهة أخرى. وتتميز أنماط السلوك الميكانيكي من خلال العلاقة بين F وε أي التابع F = f (ε).
السلوك الميكانيكي المرن
عند تطبيق قوة على جسم ومراقبة التشوه ε، يقال إن الجسم يتمتع بقدر من المرونة عندما يتناقص التشوه بمجرد تناقص القوة (الـشكل-1 أ-). إذا تطـابق منحني التحميل المرافق لزيادة القـوة مع المنحني المرافق لتناقص القوة، يقال: إن المرونة كاملة، أو مثالية، وإن العلاقة F = f (ε) تمكن من تحديد القوة بمجرد معرفة التشوه وبالعكس (الشكل -1 ب-)؛ وإن المادة لا تحتفظ بتشوه دائم، وإنما تعود إلى أبعادها وشكلها الابتدائيين. عندما تكون العلاقة F = f (ε) خطية (الشكل -1 جـ -)؛ تصبح المرونة كاملة وخطية F = k ε حيث يمثل k ثابتاً يميز المادة. أما إذا احتفظ الجسم - بعد تحميله قوة تفوق عتبة معينة وإزالة هذه القوة - بتشوه دائم؛ فيقال: إنه يتميز بسلوك لدن (الشكل -1 أ -).
| الشكل(1) |
أما ما يتعلق بالسلوك اللزج لبعض الأجسام، مثل السوائل والبوليميرات polymers والمعادن عند درجات الحرارة العالية؛ فيتم توصيف السلوك من خلال علاقة تربط بين معاملات القوى ومعاملات سرعة التشوه؛ أي مشتق التشوه بدلالة الزمن e واللزوجة η.
يستنتج مما سبق أن المرونة سمة تصف السلوك الميكانيكي للمواد كاملاً أو جزئياً وفق استجابتها لفعل القوى المؤثرة فيها.
توصيف السلوك المرن - اختبار الشد
يعدّ اختبار الشد tensile test من أكثر الاختبارات شيوعاً لتوصيف السلوك الميكانيكي للمواد، ويتضمن هذا الاختبار إخضاع عينة أسطوانية أو موشورية محددة الأبعاد والشكل لقوة متزايدة موازية لمحورها حتى انهيارها وتسجيل منحني زيادة القوة بدلالة زيادة التشوه (استطالة العينة) . تسمح دراسة هذا المنحني باستنتاج سلوك المادة المدروسة وتحديد عدد من المواصفات الميكانيكية المهمة في التطبيقات الهندسية. ولاختلاف أشكال العينات وأبعادها، ومن أجل معايرة منهجية الدراسة؛ يتم عموماً - بالاعتماد على تجانس توزيع القوى على سطح مقطع عينة الشد - استخدام مفهوم الإجهاد stress الذي يعبر عن القوة المطبقة على واحدة السطح والتشوه النسبي strain الذي يعبر عن استطالة واحدة الطول. فعندما تتعرض عينة سطح مقطعها S وطولها الابتدائي L لقوة شد موازية لمحورها؛ يكون الإجهاد الناظمي σ المطبق على سطح مقطعها العمودي على اتجاه القوة مساوياً إلى σ = F/S ويكون التشوه النسبي ε الناجم عن استطالة قدرها ∆L مساوياً إلى ε = (∆L/L) x 100. يسمح ذلك بتحويل المنحني إلى منحني إجهاد- تشوه (σ, ε) يتميز بالعمومية التي لا تتعلق بأبعاد العينة. يعطي (الشكل -2) عدة نماذج من منحنيات الشد الممثلة لعدد من المواد التي تظهر أنماطاً مختلفة في سلوكها الميكانيكي.
يبين منحني الشد للمواد القَصِفة brittle، مثل المواد الزجاجية والسيراميكية (الشكل-2 ب -) السلوك المرن المتميز لهذه المواد حيث يزداد الإجهاد خطياً بدلالة التشوه حتى الانهيار الذي يحصل عند إجهاد الكسر σ1 دون إنذار مسبق ودون أي تشوه دائم. فإذا أزيلت قوة التحميل من أجل إجهاد σ أصغر من σ1، تناقص منحني الإجهاد - تشوه على منحني التحميل نفسه، وعادت العينة إلى أبعادها الابتدائية. يُعدّ روبرت هوك Robert Hookeمابين(1635-1703) من الرواد الأوائل في علم الميكانيك ودراسة السلوك الميكانيكي للمواد، وينسب إليه قانون التناسب بين الإجهاد σ والتشوه ε في المواد ذات السلوك المرن (قانون هوك):
σ = F/S = E ∆L/L = Eε
حيث يشير E إلى معامل المرونة elastic modulus أو معامل يونغYoungمابين(1773-1829) الذي يساوي ميل المنحني الخطي إجهاد - تشوه.
يبين منحني الشد للمواد اللدنة - مثل المعادن وسبائكها (الشكل -2 جـ)- أن السلوك الميكانيكي لهذه المواد هو سلوك مركب يتضمن عدة مراحل متميزة. في المرحلة الأولى، يكون التشوه مرناً ما بقي الإجهاد أصغر من حد المرونة σE، فإذا تعرضت عينة الشد إلى إجهاد σ أصغر من σE، وأزيل هذا الإجهاد؛ عادت العينة إلى أبعادها الابتدائية. أما إذا تجاوز الإجهاد حد المرونة دون بلوغ إجهاد الكسر σf، فإن إزالة الإجهاد تسبب تعرض العينة إلى تشوه دائم. وكما أشير سابقاً، يعطي ميل المنحني إجهاد - تشوه في المنطقة الخطية معامل المرونة E للمادة المدروسة.
| الشكل(2) |
يتميز منحني الإجهاد - تشوه لمادة مطاطية (الشكل -2د) بصغر حد المرونة σE وصغر معامل المرونة E وارتفاع التشوه النسبي قبل الانهيار وعنده (100 - 1000٪) ويعود ما يشاع عن تميز مرونة المطاط إلى قابليته العالية للتشوه العكوس بفعل إجهادات صغيرة مع أن قسماً كبيراً من هذا التشوه لا يتسم بالسلوك المرن.
يشير قانون هوك إلى ارتباط التشوه بخواص المادة ولاسيما معامل المرونة وإلى استقلال الإجهاد عنها وارتباطه بأبعاد الجسم ولاسيما السطح المطبق عليه (سطح مقطع عينة الشد).
يرتبط معامل المرونة E مباشرة بالمرونة (السلوك الميكانيكي المرن)، فكلما كان E كبيراً، ازدادت المقاومة الميكانيكية؛ أي صغر التشوه، وازدادت عتبة إجهاد حد المرونة σE الذي يبدأ بعده التشوه اللدن. وكلما كان E صغيراً؛ ازدادت قابلية التشوه بفعل قوى أو إجهادات صغيرة.
تصنف المواد التي تنسجم مع قانون هوك ضمن المواد المرنة والخطية المرفقة. وإذا كانت كل مادة مرنة ليست خطية بالضرورة؛ فإن كل مادة خطية السلوك ليست بالضرورة مرنة؛ لأن استجابتها للإجهاد قد لا تكون آنية (المواد المرنة اللزجة، مثل البوليميرات والمعجونة والمعلقات ).
يشير تعبير المرونة إلى نمط من أنماط السلوك الميكانيكي لعدد من الأجسام الصلبة التي تتشوه تحت تأثير الإجهادات على نحو آني ومرن وعكوس حيث يتناسب التشوه مع الإجهادات المطبقة وينعدم تماماً وآنياً بمجرد زوالها طالما بقيت هذه الاجهادات أصغر من قيمة حدية تسمى حد المرونة σE.
نظرية المرونة
تقتصر خاصة المرونة على إجهادات محدودة أصغر من حد المرونة σE الذي يترافق في معظم المواد مع تشوهات صغيرة. من هنا اقترن تعبير المرونة بنظرية أساسية تسمى نظرية المرونة theory of elasticity التي تعنى بدراسة التشوهات الصغيرة والمستمرة والعكوسة للأجسام المرنة والمتجانسة.
تستند نظرية المرونة إلى عمومية قانون هوك وإلى مبدأ الجمع الذي ينص على أن محصلة التشوهات الناجمة عن مجموعة قوى تساوي مجموع التشوهات الناجمة عن كل منها. تتناول نظرية المرونة تحليل الإجهادات والتشوهات في كل نقطة من الجسم المعرض لجملة من القوى، كما تسعى إلى إنقاص عدد المعاملات أو الثوابت في المعادلات التي تربط بين الإجهادات والتشوهات بالاعتماد على عمليات التناظر التي تتميز بها المادة.
| |
الشكل(3) |
1- مفهوم الإجهاد: عندما يتعرض جسم إلى قوة خارجية فإنها تؤثر في سطحه، وينتقل تأثيرها إلى داخله؛ لأن كل عنصر حجم يؤثر في العنصر المجاور. تتعامل نظرية المرونة مع مفهوم الإجهاد σ الذي يعبر عن القوة في واحدة السطح (σ = F/S) S. وحيث يمكن تقسيم متجه القوة المؤثرة في سطح إلى مركبة ناظمية ومركبة مماسية (الشكل -3)، فإذا كانت القوة ناظمية، يقال: إن الإجهاد ناظمي σ، وإذا كانت مماسية، يقال: إنه إجهاد قص τ. إن التوصيف الكامل للإجهادات المؤثرة يتطلب ليس فقط تحديد قيم القوى المؤثرة واتجاهاتها؛ وإنما أيضاً اتجاهات السطوح المعرضة للقوى؛ لأن تغير اتجاه السطح يؤدي إلى تغير مركبات القوة وبالنتيجة الإجهاد المؤثر فيه. بناءً على ذلك، يصبح التعريف العام للإجهاد على النحو الآتي:
حيث يشير j إلى محور الإحداثيات الموازي للقوة
وi إلى محور الإحداثيات العمودي على السطح ∆Si.
بتعبير آخر: من أجل قوة محددة الاتجاه والمقدار، يتعلق الإجهاد في نقطة معينة بإحداثيات موقعها واتجاهي متجه القوة والمتجه الناظمي على السطح المعتبر المار من هذه النقطة. من هنا يشكل مفهوم الإجهاد كياناً رياضياً يربط بين متجه القوة المطبق على سطح ما والمتجه الناظمي عليه. وباعتبار المتجهات موترات[ر] من الدرجة الأولى، تكون الإجهادات من الطبيعة الرياضية نفسها ويمثل الإجهاد σij موتراً من الدرجة الثانية يتضمن، في جملة إحداثيات ثلاثية الأبعاد، تسع مركبات للإجهاد، ثلاث منها ناظمية σii وست مماسية τii.
2- مفهوم التشوه: تتشوه الأجسام بفعل القوى التي تتعرض لها، ويحصل التشوه نتيجة انتقال المادة وما ينجم عنه من تغير في الطول أو التواء ناتج من تغير في الزوايا. يعرف انتقال نقاط المادة ضمن جملة إحداثيات (xyz) بوساطة متجه الانتقال ، الذي يتعلق بإحداثيات النقطة ، ومركباته (uvw). فإذا عددنا قطعة مستقيمة تصل بين نقطتين A وB من جسم صلب يتعرض للتشوه، تصبح هذه القطعة بعد التشوه B' A' ويكون تشوهها النسبي
إذا كان ε موجباً، نتحدث عن استطالة، وإذا كان سالباً، نتحدث عن تقلص. وبما أن انتقال النقطتين AوB يتعلق بإحداثيات كل منهما، فإن B' A' ليس بالضرورة موازياً لـ AB، وتسمى الزاوية بين اتجاه AB واتجاه 'B' A بالانتقال الزاوي. من هنا يصبح التشوه مرتبطاً باتجاه انتقال النقطة (اتجاه التغير في الطول) واتجاه الطول الأصلي، فعندما يكون الاتجاهان متطابقين، نتحدث عن تشوه طولي (شد، انضغاط، تمدد، تقلص)، وعندما يتعامدان، نتحدث عن تشوه قص shear deformation.
في حالة أحادية البعد على المحور ox، فإن استطالة قطعة مستقيمة صغرية AB طولها dx تساوي الفرق بين انتقال النقطة B وانتقال النقطة A. فإذا كان انتقال النقطة A يساوي uA، فإن انتقال النقطة B سيكون
أما التشوه النسبي فهو
وبالطريقة نفسها يكون التشوه النسبي للقطعة نفسها إذا كانت على المحور oy أو oz مساوياً إلى
على الترتيب.
الشكل(4) |
في حالة تشوه القص، يمكن عد تشوه مربع صغري توازي أضلاعه محوري الإحداثيات في المستوي xoy يتحول بفعل تشوه القص إلى معين تميل أضلاعه بزاويتين صغريتين θ1 وθ2 على كل من المحورين ox وoy (الشكل-4). يعرف تشوه القص بالعلاقة:
وبعدّ الزاويتين θ1 وθ2 صغيرتين، يكون:
ويعطى تشوه القص للمربع وفق الاتجاهين ox وoy بالعلاقة :
حيث (uv) تمثل مركبات شعاع الانتقال في المستوي xoy.
بناءً على ذلك يعطى التشوه عموماً بالعلاقة
فإذا تطابق اتجاه التشوه مع اتجاه الطول الأصلي، كان التشوه طولياً
وإذا اختلفا، كان تشوه القص
ينتج التشوه εij من العلاقة بين متجه الانتقال
ومتجه الطول الأصلي، لهذا يعدّ التشوه εij موتراً من الدرجة الثانية يتميز بالتناظر لأن εij = εji.
العلاقة بين الإجهاد والتشوه، قانون هوك العام
يعنى مهندسو الإنشاءات بتحليل حالة الإجهادات في البنية الإنشائية، حيث يصعب قياس حالة الإجهادات مباشرة، إنما يمكن قياس حالة التشوهات والسعي إلى صياغة علاقة بين الإجهادات والتشوهات. تسمى هذه العلاقة بالمعادلة الأساسية، ويعدّ قانون هوك العام المعادلة الأكثر شيوعاً التي تعبر عن علاقة خطية بين الإجهاد والتشوه على النحو الآتي: σij= Cij εklحيث يسمى Cijkl موتر المتانة (الجسأة) stiffnessالذي يعبر عن مقاومة المادة للتشوه. يمثل هذا القانون ست معادلات تربط بين الإجهاد والتشوه ويعطى الإجهاد σ23 على سبيل المثال وفق العلاقة:
σ23 = C2311 ε11+ C2312 ε12+ C2313 ε13+ C2322 ε22+ C2323 ε23+ C2333ε33
تمثل الثوابت Cijkl موتراً من الدرجة الرابعة يتضمن 36 مركبة بدلاً من 81، ويعود ذلك إلى تناظر كل من موتر الإجهادات σij وموتر التشوهات εij. من جهة أخرى، يتميز موتر المتانة Cijkl بخاصة التناظر (Cijkl = Cklij)، وهذا ما يخفض عدد المركبات إلى 21 في موتر المتانة. ينطبق ذلك على المواد عديمة التناظر، أما المواد التي تمتلك خواص تناظر، فإن عمليات التناظر تسهم في تقليل عدد مركبات موتر المتانة. فمن أجل جسم متماثل المناحي isotrope حيث تتساوى ثوابت المتانة في كل الاتجاهات، يقتصر موتر المتانة على ثابتين فقط؛ هما معامل المرونة E وثابت بواسون uυ ويُشتق منهما ثابتا لامي λ Lamé وμ حيث:
يمكن أيضاً صياغة قانون هوك بحيث تعطى التشوهات بدلالة الإجهادات: εijkl = Sijkl σkl حيث يسمى Sijkl موتِّر المطاوعة compliance الذي يشترك - من أجل المادة نفسها - مع موتر المتانة في عدد المركبات ومنهجية التعامل، ويختلفان في الواحدة (واحدة ثوابت موتر المطاوعة هي مقلوب واحدة ثوابت موتر المتانة).
المرونة الضوئية
الشكل(5)توزع الإجهاداتضمن عينةذات فتحة مستديرة |
تهدف المرونة الضوئية photoelasticity إلى تمثيل حالة الإجهادات في بنية ميكانيكية حقيقية وتفحّصها؛ وذلك عبر إخضاع نموذج شفاف مصغر لهذه البنية لحالة إجهادات مماثلة واستخدام ظاهرة الانكسار المضاعف المحرضة بفعل الإجهاد في مادة النموذج لدراسة توزع هذه الإجهادات فيه. ولدى مرور حزمة من الضوء المستقطب ضمن النموذج يتم الحصول على مجموعة من أهداب التداخل (الشكل -5) التي تتعلق بالإجهادات المطبقة في كل نقاط النموذج وتسمح بتحديد شدة هذه الإجهادات واتجاهاتها. تتميز طريقة المرونة الضوئية بإمكانية توفير تمثيل مجسم لحالة الإجهادات وتقييم شكل البنية وأبعادها ونقاط الضعف المحتملة قبل استنتاج المعطيات الرقمية.
التوجهات المعاصرة في مجال المرونة
ما تزال نظرية المرونة تشكل العمود الفقري لميكانيك الجسم الصلب وتطبيقاته المتعددة. وتتمحور تطبيقات المرونة الراهنة حول اتجاهات مختلفة من أبرزها:
ـ هندسة الميكانيك الإنشائي،
ـ دراسة الخواص الميكانيكية للمواد والأجسام الصلبة ونمذجتها،
ـ الجيوفيزياء وتفسير المعطيات السيزمية،
ـ الفحص اللاإتلافي للمواد والبنى،
ـ البيوميكانيك (ميكانيك الأعضاء الحية) وتوصيف النسج الطرية (الشرايين والأربطة و…)،
ـ مرونة المطاطيات ودراسة حالات اللامرونة والمرونة اللاخطية،
ـ المرونة الحرارية thermoelasticity والمرونة المغنطيسية اللاخطية nonlinear magnetoelasticity،
ـ السلوك الميكانيكي لأغشية الترشيح وميكانيك الأغشية الرقيقة،
ـ ميكانيك الكسر fracture mehanics.
رفيع جبرة
مراجع للاستزادة: |
- S. TIMOSHENKO & J.N. GOODIER, Theory of Elasticity (McGraw-Hill, N. Y. 1951).
- L.D. LANDAU & E. M. LIFSCHITZ, Theory of Elasticity (Pergamon Press, England 1986).
- ARTHUR BORESI & KEN. P. CHONG, Elasticity in Engineering Mechanic, (Wiley, N. Y. 1999).
- التصنيف : الكيمياء و الفيزياء - النوع : علوم - المجلد : المجلد الثامن عشر - رقم الصفحة ضمن المجلد : 441 مشاركة :